

Breaking the Lens of the Telescope: Online Relevance Estimation over Large Retrieval Sets

Mandeep Rathee, Venktesh V, Sean MacAvaney, and Avishek Anand

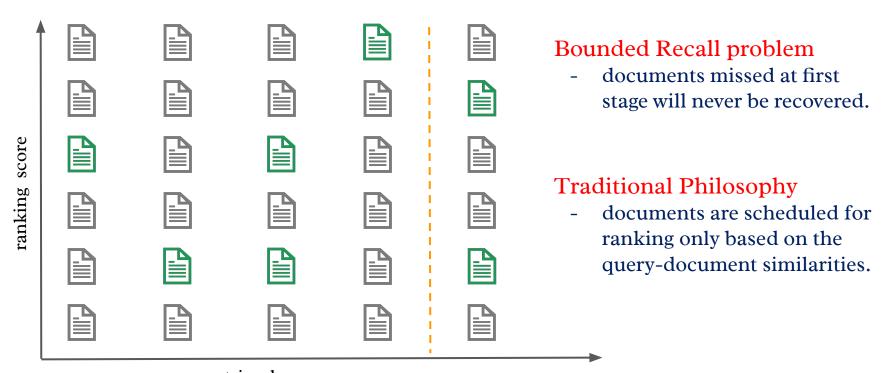
Search Systems

Given:

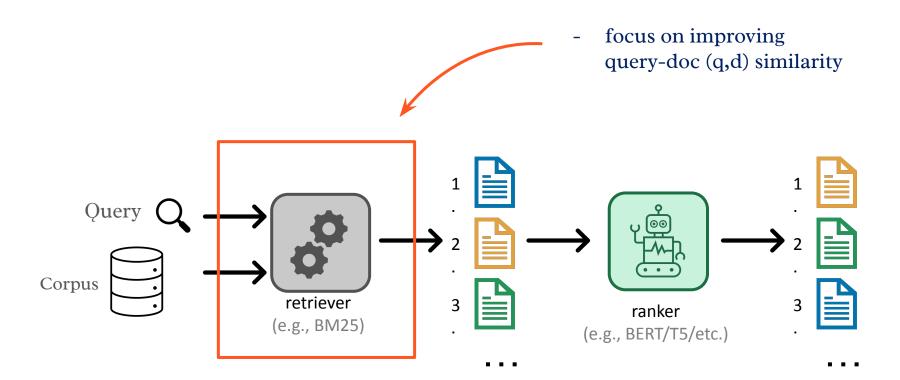
Telescoping Setting

retrieve-then-rank or cascading or multi-stage ranking

filtering is done using

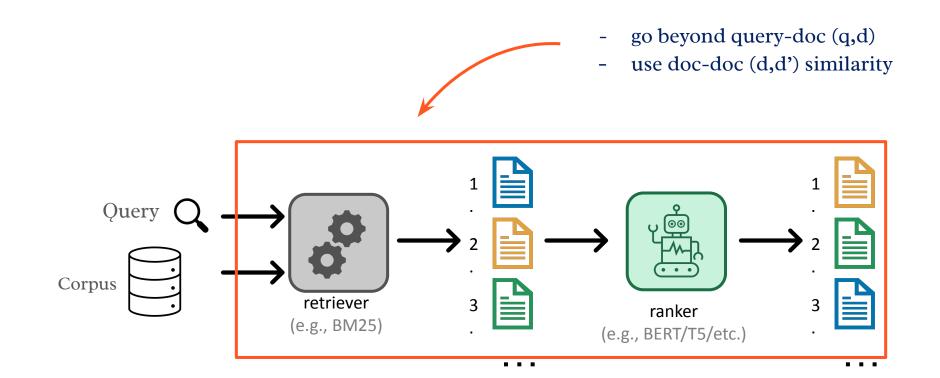

- inexpensive model, e.g., BM25
- uses (q, d) similarity

Telescoping Setting


filtering is done using retrieve-then-rank or cascading or multi-stage ranking inexpensive model, e.g., BM25 uses (q, d) similarity expensive ranker ~95% of the time is taken by the expensive ranker

retrieval score

Limitations in Telescoping Setting



retrieval score

Hybrid Retrieval

Reciprocal Rank Fusion (RRF) Convex Combination (CC)

Adaptive Retrieval

GAR (MacAvaney et al. 2022) Quam (Rathee et al. 2025)

Our Method

ORE: Online Relevance Estimation

- Based on the **Multi-Arm-Bandit** framework
- Dynamically selects batches during re-ranking using exploration and exploitation
- Approximates the expensive ranker by a simple linear model

Online Relevance Estimation

exploration and exploitation

Features taxonomy:

Q2D:

- Lexical: BM25(q, d)
- Semantic: TCT(q, d)

D2D:

- Lexical: BM25(d, d')
- Semantic: TCT(d, d')
- Learned affinity: LAFF(d, d') [1]

D2Set:

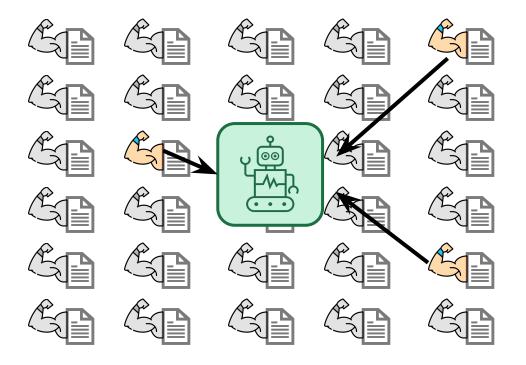
already high ranked documents

Online Relevance Estimation

$$\vec{x}_d$$

ESTREL
$$(\vec{\alpha}, \vec{x}_d) = \vec{\alpha} \cdot \vec{x}_d^T$$

$$E(\vec{\alpha}; q, d, \vec{x}_d) = \frac{1}{2} |\phi(q, d) - \text{ESTREL}(\vec{\alpha}, \vec{x}_d)|^2$$

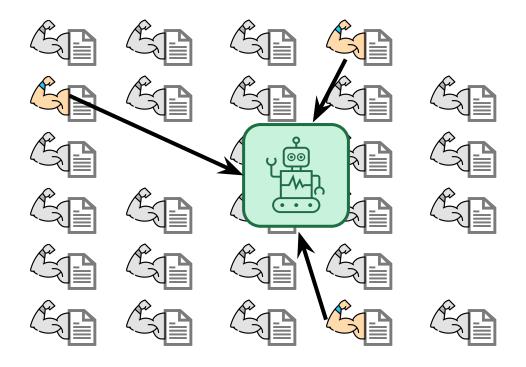

minimize $E(\vec{\alpha};q,d,\vec{x}_d)$

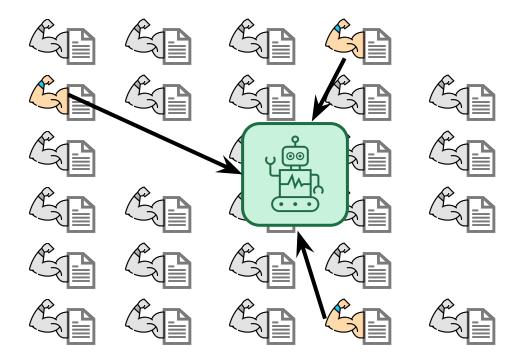
- We treat each document as an arm.
- Estimate the utility or relevance (EstRel) of each arm.

- We treat each document as an arm.
- Estimate the utility or relevance (EstRel) of each arm.
- Select b most promising arms.

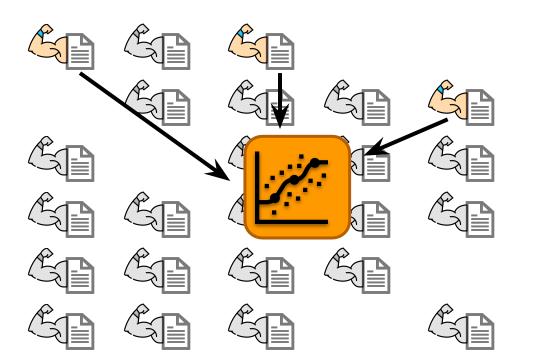
- We treat each document as an arm.
- Estimate the utility or relevance (EstRel) of each arm.
- Select b most promising arms and rank these b arms.

$$\begin{split} E(\vec{\alpha};q,d,\vec{x}_d) &= \frac{1}{2} \left| \phi(q,d) - \text{EstRel}\left(\vec{\alpha},\vec{x}_d\right) \right|^2 \\ \textit{minimize} \ E(\vec{\alpha};q,d,\vec{x}_d) \end{split}$$


- We treat each document as an arm.
- Estimate the utility or relevance (EstRel) of each arm.
- Select b most promising arms and rank these b arms.
- Compute regret/error and update alphas.


- We treat each document as an arm.
- Estimate the utility or relevance (EstRel) of each arm.
- Select b most promising arms and rank these b arms.
- Compute regret/error and update alphas
- Remove these already ranked arms.

- We treat each document as an arm.
- Estimate the utility or relevance (EstRel) of each arm.
- Select b most promising arms and rank these b arms.
- Compute regret/error and update alphas
- Remove these already ranked arms.
- Re-evaluate the utility of remaining arms.


- We treat each document as an arm.
- Estimate the utility or relevance (EstRel) of each arm.
- Select b most promising arms and rank these b arms.
- Compute regret/error and update alphas.
- Remove these already ranked arms.
- Re-evaluate the utility of remaining arms.

until we meet the stopping criteria.

- We treat each document as an arm.
- Estimate the utility or relevance (EstRel) of each arm.
- Select b most promising arms and rank these b arms.
- Compute regret/error and update alphas.
- Remove these already ranked arms.
- Re-evaluate the utility of remaining arms.

Now we can:

- approximate the scores of the expensive ranker by a simple model.
- dynamically select documents for ranking based on the utility (EstRel) scores.

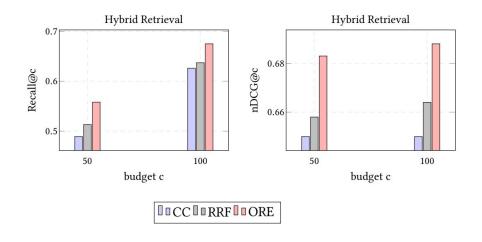
Experimental Setup

Retrievers

- sparse (BM25) and dense (TCT)

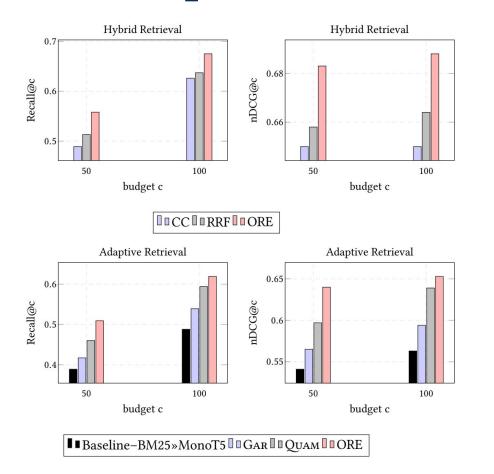
Retrieval Setting

- Hybrid (RRF and CC)
- Adaptive (GAR and Quam)

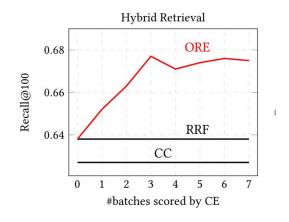

Rerankers

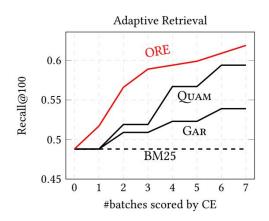
MonoT5 and RankLLaMA

Evaluation

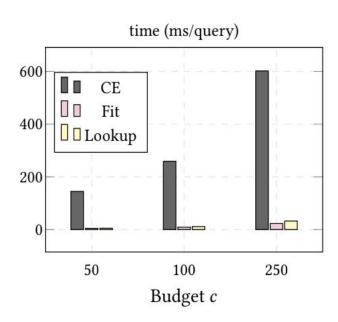

- TREC DL19 and DL20 using msmarco-passage corpus.
- TREC DL21 and DL22 using msmarco-passage-v2 corpus.

EstRel helps in documents prioritization


- Ranker: MonoT5
- ORE outperforms the baselines in both recall and nDCG at different ranking budgets.
- In hybrid: Recall@50 improves upto 14%.


EstRel helps in documents prioritization

- Ranker: MonoT5
- ORE outperforms the baselines in both recall and nDCG at different ranking budgets.
- In hybrid: Recall@50 improves upto 14%.
- Similarly, ORE shows significant gains over baselines in adaptive setting.
- In adaptive: Recall@50 improves upto 30% over standard baseline, upto 11% over Quam.

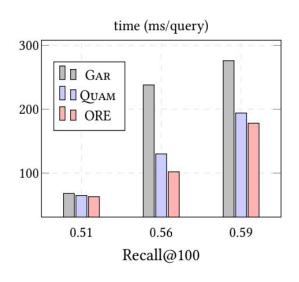

Quality of EstRel

- Estimated Relevance (EstRel) shows performance gains just after scoring first batch.
- ORE clearly shows the performance gains over baselines.
- ORE can achieve high recall while ranking the same number of batches.

Computational Efficiency

- The majority of the latency come from the expensive ranker CE (Cross-Encoder).
- Latency of fitting the simple linear model is negligible in comparison to the expensive cross encoder.

Thank you


Find it on Github

Computational Efficiency

- ORE is computationally efficient in comparison to baselines.
- ORE can achieve same recall in lower latency.

Sample Efficiency

when use RankLLaMA to rerank 1000 documents with batch size of 16

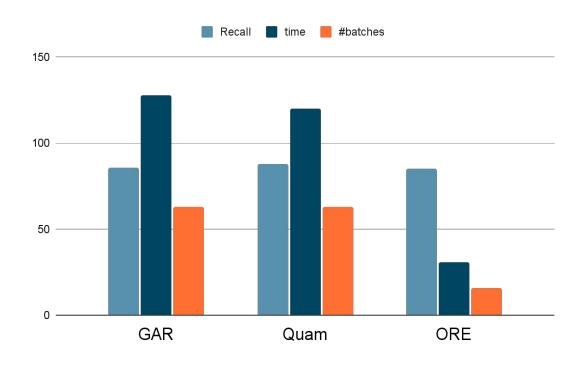


Table 1: Description of different features used in ORE. These features can be divided into two levels, Q2DAFF and D2DAFF.

Feature	Notation	Taxonomy	Source		Description
			Offline	Online	
x_1	BM25(q, d)	Q2DAff		✓	Lexical similarity between query and document.
x_2	TCT(q, d)	Q2DAff		✓	Semantic similarity between query and document.
x_3	RM3(q',d)	D2DAFF		✓	Lexical similarity between expanded query using RM3 and document.
x_4	BM25(d, d')	D2DAFF	✓		Lexical similarity between pair of documents.
x_5	TCT(d, d')	D2DAFF	1		Semantic similarity between pair of documents.
x_6	$\mathrm{Laff}(\mathit{d},\mathit{d'})$	D2DAff	✓		Learnt affinity or similarity between pair of documents [1].

Table 2: Effectiveness comparison of ORE with hybrid and adaptive retrieval methods on TREC DL19 and DL20 test sets. Significant improvements using paired t-test, p < 0.05, with Bonferroni correction, over CC, RRF, baseline (BM25»MonoT5), GAR, and Qyam are marked with B, C, R, G and Q respectively. The best scores are highlighted in bold.

			c = 50		c = 100			c = 1000			
Dataset	Pipeline	nDCG@10	nDCG@c	Recall@c	nDCG@10	nDCG@c	Recall@c	nDCG@10	nDCG@c	Recall@c	
	Exhaustive Retrieval										
	MonoT5	0.672	0.625	0.512	0.672	0.611	0.599	0.672	0.691	0.834	
	Hybrid Retrieval: (BM25 & TCT)										
DL19	RRF»MonoT5 [R]	0.735	0.658	0.513	0.729	0.664	0.637	0.703	0.740	0.879	
	CC»MonoT5 [C]	0.729	0.650	0.489	0.730	0.650	0.626	0.698	0.738	0.878	
	ORE	0.734	^{RC} 0.683	RC0.558	0.721	^{RC} 0.688	^{RC} 0.675	0.703	0.741	0.882	
	Adaptive Retrieval										
	BM25»MonoT5 [B]	0.681	0.541	0.389	0.699	0.563	0.488	0.719	0.697	0.755	
	w/ RM3	0.682	0.560	0.409	0.686	0.574	0.507	0.728	0.717	0.786	
	w/ Gar _{BM25} [G]	0.689	0.565	0.417	0.716	0.594	0.539	0.727	0.742	0.836	
	w/ Quam _{BM25} [Q]	0.698	0.597	0.460	0.729	0.639	0.594	0.742	0.770	0.874	
	w/ ORE _{BM25}	0.698	$_{B}^{GQ}$ 0.640	$_{B}^{GQ}$ 0.509	0.711	$_{B}^{G}$ 0.653	$_{B}^{G}$ 0.619	0.723	$B^{0.759}$	$_{B}$ 0.874	
DL20	EXHAUSTIVE RETRIEVAL										
	MonoT5	0.649	0.592	0.576	0.649	0.593	0.670	0.649	0.682	0.852	
	Hybrid Retrieval: (BM25 & TCT)										
	RRF»MonoT5 [R]	0.721	0.655	0.633	0.707	0.659	0.725	0.676	0.727	0.885	
	CC»MonoT5 [C]	0.718	0.654	0.632	0.709	0.660	0.721	0.681	0.727	0.884	
	ORE	0.720	0.674	0.658	0.702	RC 0.683	^{RC} 0.759	0.676	^C 0.731	^C 0.892	
	Adaptive Retrieval										
	BM25»MonoT5 [B]	0.676	0.559	0.478	0.685	0.581	0.584	0.720	0.711	0.807	
	w/ RM3	0.684	0.585	0.520	0.701	0.611	0.633	0.720	0.729	0.834	
	w/ Gar _{BM25} [G]	0.690	0.577	0.496	0.703	0.607	0.617	0.714	0.750	0.884	
	w/ Quam _{BM25} [Q]	0.714	0.615	0.553	0.717	0.652	0.678	0.709	0.756	0.901	
	w/ ORE _{BM25}	0.684	$_{B}^{G}$ 0.621	$_{B}^{G}$ 0.583	0.681	$_{B}^{G}$ 0.651	$_{B}^{G}$ 0.705	0.700	0.757	$B^{0.892}$	

Table 3: Effectiveness comparison* of ORE with hybrid and adaptive retrieval methods on TREC DL21 and DL22 test sets. The letter in subscript or superscript shows significant improvements (using paired t-test, p < 0.05, with Bonferroni correction) over the corresponding baseline.

		c =	: 50	c = 100		
Dataset	Pipeline	nDCG@c	Recall@c	nDCG@c	Recall@c	
	Hybrid					
	RRF»MonoT5 [R]	0.576	0.401	0.558	0.520	
	CC»MonoT5 [C]	0.584	0.419	0.569	0.545	
	ORE	^R 0.604	R 0.444	^{RC} 0.609	RC 0.609	
	ADAPTIVE					
	BM25»MonoT5 [B]	0.436	0.242	0.433	0.331	
DL21	w/ RM3	0.455	0.274	0.457	0.375	
	w/ Gar _{BM25} [G]	0.457	0.290	0.465	0.414	
	w/ Quam _{BM25} [Q]	0.478	0.310	0.499	0.454	
	w/ ORE _{BM25}	$_{B}^{GQ}$ 0.503	$_{B}^{GQ}$ 0.364	$B^{0.481}$	$_{B}^{G}$ 0.463	
	w/ GARTCT [G]	0.502	0.331	0.520	0.489	
	w/ Quamtct [Q]	0.491	0.311	0.518	0.477	
	w/ ORE _{TCT}	$_{B}^{GQ}$ 0.532	$_{B}^{GQ}$ 0.406	$_B0.512$	$_{B}$ 0.502	
	Hybrid					
	RRF»MonoT5 [R]	0.452	0.260	0.430	0.341	
	CC»MonoT5 [C]	0.459	0.278	0.433	0.362	
	ORE	RC 0.481	^R 0.297	^{RC} 0.459	RC 0.389	
	ADAPTIVE					
	BM25»MonoT5 [B]	0.290	0.115	0.275	0.164	
DL22	w/ RM3	0.287	0.115	0.275	0.161	
	w/ Gar _{BM25} [G]	0.287	0.121	0.290	0.191	
	w/ Quam _{BM25} [Q]	0.308	0.135	0.303	0.196	
	w/ ORE _{BM25}	0.292	0.137	0.284	0.195	
	w/ Gar _{TCT} [G]	0.329	0.157	0.348	0.256	
	w/ Quam _{TCT} [Q]	0.329	0.155	0.334	0.237	
	w/ ORE _{TCT}	$_{B}^{GQ}$ 0.364	$_{B}^{GQ}$ 0.206	$B^{0.342}$	$_{B}$ 0.260	

Table 4: Mean re-ranking latency per query (in ms) using MonoT5 and RankLLaMA rerankers when the first-stage retrieval of different budgets (c) is done using BM25. The number of batches re-ranked ORE is enclosed in parentheses.

	MonoT5						RankLLaMA						
	time (ms/query)			Recall@c			time (ms/query)			Recall@c			
c	GAR	Quam	ORE	GAR	Quam	ORE	GAR	Quam	ORE	GAR	Quam	ORE	
50	179.92	173.21	125.91(2)	0.417	0.460	0.500	6269.77	6027.12	3925.54(2)	0.421	0.449	0.492	
100	356.53	328.82	272.04(4)	0.539	0.594	0.594	12746.55	12074.67	7830.41(4)	0.542	0.600	0.600	
250	877.19	816.90	599.24(8)	0.692	0.745	0.715	32312.97	30539.78	16092.16(8)	0.684	0.761	0.719	
1000	3418.98	3219.45	1848.26(8)	0.836	0.874	0.827	127617.45	120885.39	16327.25(8)	0.854	0.881	0.829	
			2188.29(16)			0.841			31939.78(16)			0.853	

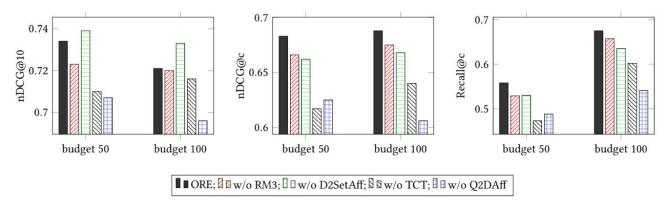


Figure 6: Effect of different features on ORE's performance in Hybrid retrieval setting.

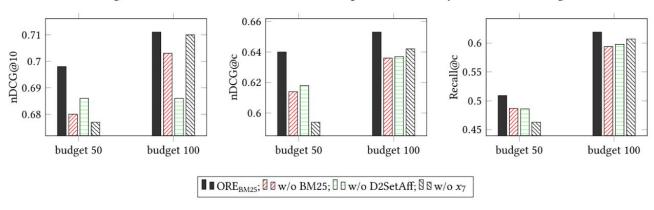


Figure 7: Effect of different features on ORE's performance in Adaptive retrieval setting.

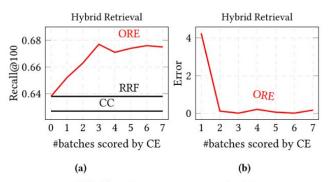


Figure 3: Recall (left) and estimation error (right) comparison for hybrid retrieval setting on the TREC DL19 dataset when the number of batches of scored by cross-encoder (CE) varies for ORE for ranking budget of 100 and batch of size 16.

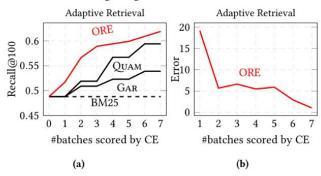


Figure 4: Recall (left) and estimation error (right) comparison on the TREC DL19 dataset for adaptive retrieval, for ranking budget of 100 and batch of size 16.